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Abstract. We consider the hard x-ray emission process by interaction between the electrons and
the ions in the solar atmosphere. We provide the integral equations describing this process as
an inverse problem in the case of uniform ionization of the plasma and of a simple but rather
realistic approximation of non-uniform conditions. The singular system of the integral operators
is computed analytically in the continuous case for the uniform ionization model and numerically
in the case of discrete data for both uniform and non-uniform ionization conditions. By analytical
arguments and analysis of the singular spectrum we point out that non-uniform ionization results in
an ambiguous interpretation of the solution of the integral equation, this solution not being unique.
Finally, we briefly recall that this analysis facilitates methods for recovering unique and regularized
solutions from high-resolution hard x-ray spectral data soon to be forthcoming from the HESSI
space mission.

1. Introduction

In July 2000 NASA’s Hessi mission [6] will acquire many high-resolution x-ray spectral data
from the Sun. The impending launch of this mission has spurred interest in the problem of
processing these data in order to infer information about the emission phenomena occurring
in the solar atmosphere. In the present paper we show that this problem can be formulated as
a linear inverse problem. We first consider a rather primitive model of uniform ionization for
the solar atmosphere. Then we point out a fundamental ambiguity arising in the solution of the
problem when the more realistic condition of non-uniform ionization is assumed. Finally, we
propose a numerical analysis providing mathematical tools for a physically significant unique
solution of the problem.

Cosmic plasmas such as solar active regions and compact stellar accretion discs are
periodically characterized by transient excitation of the atmosphere followed by a dramatic
increase of the electromagnetic emission and by the ejection of plasma particles outside the
atmosphere. It is widely recognized that these explosive phenomena have magnetic origin, all
other possible energy sources (such as gravitational and thermal sources) being insufficient
to explain the amounts of energy released, of order 1032 erg in the case, for example, of a
solar flare [15]. However, details of how energy release occurs and how a substantial fraction
of it is channelled into accelerating plasma particles are poorly understood. As far as the
energy release mechanism is concerned, it must be noticed that the equations of resistive
magnetohydrodynamics (MHD), the theoretical basis for the description of this kind of process,
involve a diffusion time which is much larger than the experimentally observed release time.
In order to explain such a fast energy release many model situations have been formulated:
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e.g., via decay of a ‘sheet current’ separating regions of oppositely directed magnetic field
which reconnect; untwisting of the azimuthal magnetic field in a twisted loop by decay of a
current along the loop; and diverse MHD instabilities. For rather complete reviews of solar and
cosmic flares, see [11,14,16]. Each of these processes will generate complicated distributions
of electric field—both macroscopic (induced fields) and microscopic (plasma waves)—and also
of mass flow, which will accelerate electrons and ions by various mechanisms such as direct
runaway in large-scale fields, stochastic wave particle processes, and shock wave interactions.
In none of these cases is the theory well established and of course a general goal to validate the
model is to infer from data information about the resulting fast particle distributions (spectral,
spatial and temporal). To this end two possible approaches can be addressed. In a direct route
distinctive aspects of the distributions are predicted from models for comparison with observed
data while in an inverse approach the particle distributions are inferred non-parametrically from
data. Because many of the physically important functions are not observable directly (image
resolution is too small and photon not particle spectra are measured), much recent effort has
gone into the inverse approach and particularly into problems of inferring the distribution
of accelerated particles and of heated plasma from their electromagnetic spectra, as potential
diagnostics of the basic physical processes involved [5,7,10,12]. The inverse problem approach
to this has now become especially relevant following major advances in the resolution available
in high-energy photon spectrometry.

The Sun, by far the nearest star, provides the best opportunity we have for study of
these problems. In particular, during the impulsive phase of a solar flare, strongly accelerated
electrons collide with the ions of the background plasma (bremsstrahlung process) thus losing
their energy by emitting x-ray radiation in the range 10–100 keV. The inverse problem we are
interested in is to restore the electron distribution function from the measured x-ray data. This
solar flare hard x-ray (HXR) diagnostic problem was first recognized as an integral inversion
problem in [3] where for the non-relativistic Bethe–Heitler cross section the problem is reduced
to Abel’s equation and hence solved analytically. However, only in recent years, with the advent
of Ge detectors, have HXR data approached the spectral resolution and precision needed for
such inversions to be undertaken meaningfully. The crucial difficulty in this inverse approach
is in the numerical instability which dramatically shows up in the analytical solution of the
problem when the data are affected by experimental noise. This instability, a consequence of
the ill-posedness of the problem, can be reduced by usingad hocregularization techniques as
done, for example, in [7,12,13,17].

However, besides instability, an important complication in the spectral inverse problem
was recognized in [4] in the case of the so-called thick-target model, where the electrons emit
bremsstrahlung HXRs in Coulomb collisions with the dense lower solar atmosphere as they
descend from a coronal acceleration site. Most thick-target modelling of data approximates
the atmospheric target as fully ionized, following [3]. However, in [4] it is emphasized that the
fall in target ionization across the solar transition zone (from hot corona to cool chromosphere)
is accompanied by a drop in the electron collisional energy loss rate which enhances the HXR
yield and distorts the HXR spectrum compared with the ionized case for a given electron
injection spectrum. In [4] it is found by analytical arguments that, in the case of a (good) step
function approximation to the ionization change, the corresponding inverse problem has no
unique solution for the electron injection spectrum even when the physical positivity constraint
is applied.

In section 2 of the present paper we describe the thick-target bremsstrahlung problem
both in the case of uniform ionization and in the case of a step function approximation to the
ionization change. As far as the uniform case is concerned, a singular value decomposition
(SVD) analysis of the integral equation describing the bremsstrahlung process is performed in
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section 3 both from an analytical and from a numerical point of view. In the case of non-uniform
ionization, following [4] in section 4, we analytically point out the non-uniqueness of the
solution of the inverse problem even for physically meaningful electron distribution functions.
Then we compute the singular system of the integral operator with a step function integral
kernel and relate the behaviour of the singular spectrum to this non-uniqueness property.
Finally, in section 5, we notice that this SVD analysis provides a basis for a robust approach to
HESSI HXR data inversion since both the generalized solution as a means to eliminating non-
uniqueness and the most typical regularized solutions as a means to reducing the numerical
instability due to the ill-posedness of the thick-target inverse problem can be expressed as
linear combinations of the singular functions.

Finally, we observe that the study of the sensitivity of the singular spectrum to changes
in the integral kernel of the operator describing the process represents a goal of rather general
interest in solar/stellar physics where the most realistic models are typically formulated in
terms of integral equations with different kernels allowing for different physical conditions.

2. The thick-target inverse problem

Following the analysis of [3,4] we can relate the bremsstrahlung spectrumJ (ε) (i.e. photons
emitted per second per unit of photon energyε) to the injection spectrumF0(E0) (electrons
per second per unit of electron injection energyE0) by

H(ε) = εK0

Q0
J (ε) =

∫ ∞
ε

F0(E0)

∫ E0

ε

q(ε, E)dE dE0

λ + x(E2
0 − E2)

. (2.1)

HereQ0q(ε, E) is the bremsstrahlung cross section whereQ0 is a constant. The ionizationx
along the electron path is a function of the column depthN reached by the electron;N can be
expressed in terms of the electron energyE0 at the injection and the electron energyE at the
point where the electron is decelerated by collisions. The constantsK0 andλ are defined by
K = 2πe43 andλ = 3eH/3where3 = 3ee−3eH ande is the electron charge.3eeand3eH

are the (constant) Coulomb logarithmics for the electron–electron and the electron–hydrogen
collisions. In (2.1) the outer integral is over electron injection energy and the inner over the
electron path through the target. In [9] many possible forms for the bremsstrahlung cross
sectionQ0q(ε, E) can be found.

Remark 2.1. Here we are mainly interested in the relative effect of having the ionizationx

varying as against being constant and, therefore, we consider the simplest Kramers formq = 1.
In [12] the bremsstrahlung problem is studied in the case of uniform ionization and Bethe–
Heitler cross section. However, the sensitivity to changing the cross section in a non-uniform
ionization plasma, also allowing for relativistic effects, will be the subject of future research.

In [7,12,13] the approximationx = 1 is adopted. In that case by reversing the integration
order and by differentiating with respect toε equation (2.1) becomes

L(ε) := −H ′(ε) = 1

λ + 1

∫ ∞
ε

F0(E0) dE0. (2.2)

In [4] (2.1) is briefly discussed for general forms ofx but then interest is concentrated on the
case wherex(N) is a step function from 1 to 0 at some depthN1 to approximate well the actual
solar atmospheric structure. IfE1 is the value ofE0 needed to reachN1 this amounts to setting

x(E2
0 − E2) =

{
1 E2

0 − E2 > E2
1

0 E2
0 − E2 < E2

1.
(2.3)
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In this case forq = 1, reversing the integration order and differentiating with respect toε,
(2.1) can be written as

−
∫ ∞
ε

F0(E0) dE0

λ + x(E2
0 − ε2)

= −H ′(ε) = L(ε) (2.4)

for generalx, while for x given by (2.3) it becomes∫ ∞
0
F0(E0)K(ε,E0) dE0 = L(ε) (2.5)

where the kernelK is

K(ε,E0) =


0 E0 < ε

1

λ + 1
ε 6 E0 6

√
E2

1 + ε2

1

λ
E0 >

√
E2

1 + ε2.

(2.6)

In the following we will assume different variables for equations (2.2) and (2.5), (2.6). By
definingη = E2

0/E
2
1, ξ = ε2/E2

1, f (η) dη = F0(E0) dE0/F0(E1), g(ε) = L(ε)/L(E1),
equation (2.2) becomes

g(ξ) = 1

1 +λ

∫ ∞
ξ

f (η) dη (2.7)

while equations (2.5), (2.6) assume the neater form

g(ξ) = 1

λ + 1

∫ ξ+1

ξ

f (η) dη +
1

λ

∫ ∞
ξ+1
f (η) dη. (2.8)

We finally notice that, in principle, the electron injection energyE0 may assume whatever large
value though it is reasonable to fix a maximum value significantly larger than the characteristic
energyE1. In other terms in the next sections we will consider and compare analysis of the
equations

g(ξ) = 1

1 +λ

∫ c

ξ

f (η) dη (2.9)

and

g(ξ) = 1

λ + 1

∫ ξ+1

ξ

f (η) dη +
1

λ

∫ c

ξ+1
f (η) dη. (2.10)

with 1< c <∞.

3. SVD analysis (uniform ionization case)

In the present section we consider the study of equation (2.9) by means of a singular value
decomposition analysis. We introduce the integral operatorS : L2(0, c)→ L2(0, c),

(Sf )(ξ) = 1

λ + 1

∫ c

ξ

f (η) dη (3.1)

with L2(0, c) equipped with the canonical scalar product(·, ·)2
(f1, f2)2 =

∫ c

0
f1(η)f2(η) dη. (3.2)

S is a compact linear operator whose adjointS∗ : L2(0, c)→ L2(0, c) is

(S∗g)(η) = 1

λ + 1

∫ η

0
g(ξ) dξ. (3.3)
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The singular system ofS is defined as the infinite set of triples{σk; uk, vk}∞k=1 such that

Suk = σkvk; S∗vk = σkuk. (3.4)

The following theorem holds.

Theorem 3.1.The singular system ofS is given by

uk(η) = ak sin

(
η

σk(1 +λ)

)
, (3.5)

vk(ξ) = bk sin

(
ξ − c

σk(1 +λ)

)
(3.6)

and

σk = 2c

π(1 +λ)(2k − 1)
(3.7)

with bk = (−1)k+1ak andak =
√

2/c.

Proof. Equations (3.1)–(3.4) imply that

uk(0) = 0; vk(c) = 0. (3.8)

Furthermore, by differentiating both sides of (3.4) and by using (3.8) we obtain

u′k(c) = 0; v′k(0) = 0. (3.9)

Finally, from

(S∗Suk)(η) = 1

(λ + 1)2

∫ η

0

∫ c

ξ

uk(η) dη dξ, (3.10)

(SS∗vk)(ξ) = 1

(λ + 1)2

∫ c

ξ

∫ η

0
vk(ξ) dξ dη (3.11)

and equations (3.4), (3.8) and (3.9), we have that the singular functionsuk andvk and the
singular valuesσk satisfy the boundary-value problems

σ 2
k u
′′
k = −

1

(1 +λ)2
uk

uk(0) = 0

u′k(c) = 0

(3.12)

and

σ 2
k v
′′
k = −

1

(1 +λ)2
vk

vk(c) = 0

v′k(0) = 0.

(3.13)

These two problems can be easily solved to obtain equations (3.5), (3.6) and the boundary
conditions imply equation (3.7) for the singular values. As far as the constantsak andbk are
concerned, again differentiation of equation (3.4) implies thatbk = (−1)k+1ak and theak can
be determined by imposing the normalization condition‖uk‖2L2(0,c) = 1 so thatak =

√
2/c. �

S represents an example of a compact operator which is meaningful from a physical point
of view and whose singular system can be exactly computed. However, it must be noted
that in real applications detectors provide the photon spectrum only in correspondence to a
finite number of discrete photon energies (to be more precise, a finite number of integrals of the
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photon spectrum over finite ranges of the photon energy; nevertheless here we choose to neglect
this integration since the effects on the singular values do not seem to be significant [12]). In
other terms it is completely realistic to consider the linear inverse problem with discrete data

gn = SNf n = 1, . . . , N (3.14)

with SN : L2(0, c)→ Y thesingle-stepfinite rank operator

(SNf )(ξn) =
∫ c

ξn

f (η) dη n = 1, . . . , N, (3.15)

gn = g(ξn) n = 1, . . . , N andY is an Euclidean space equipped with the scalar product

(g,h)Y =
N∑

n,m=1

gnwnmh
∗
m (3.16)

∀g,h ∈ Y . SN is again a compact linear operator and the singular system can be introduced
as the finite set of triples{σ (N)k ; u(N)k , v

(N)
k }Nk=1 such that

SNu
(N)
k = σ (N)k v

(N)
k ; S∗Nv

(N)
k = σ (N)k u

(N)
k (3.17)

whereS∗N : Y → L2(0, c) is the adjoint operator

(S∗Ng)(η) =
N∑

n,m=1

χ[ξm,c]gnwnm (3.18)

with χ[ξm,c] the characteristic function of the interval [ξm, c]. The problem of performing the
SVD of SN can be reduced to a diagonalization problem inY . First, we observe that the
singular valuesσ (N)k and the singular vectorsv(N)k are the eigenvalues and the eigenvectors of
the matrixSNS∗N . On the other hand, Riesz’s lemma implies that the application ofSN on f
can be represented as

(SNf )n = (f, ψn)2 (3.19)

whereψn(η) is defined by

ψn(η) =
 0 η 6 ξn

1

1 +λ
ξn < η 6 c.

(3.20)

It can be shown straightforwardly [1] thatSNS∗N = G⊥W whereG is the symmetric Gram
matrix whosenm-entry is defined asGnm = (ψn, ψm)2 andW is the weight matrix,

Wnm = wnm. (3.21)

Moreover, the singular functions can be computed in terms of theψn by the equation

u
(N)
k (η) = 1

σk

N∑
n,m=1

wnm(vk)mψn(η). (3.22)

Therefore, the crucial point is to determine the Gram matrixG. In our case this computation
is very easy and the result is, forn > m,

Gnm = 1

(1 +λ)2
(c − ξn). (3.23)

We have diagonalizedG⊥W in both cases of uniform and geometrical sampling. For uniformly
sampled points

ξn = ξ1 + d(n− 1) n = 1, . . . , N (3.24)
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the typical form for the weights is

wnm = dδnm (3.25)

while for the geometrical distribution

ξn = ξ11
n−1 n = 1, . . . , N (3.26)

a good choice is

wnm = (log1)ξnδnm. (3.27)

We compare the singular values ofS andSN in the case ofN = 100 points in the energy
rangeξ1 = 0, ξN = 70. First of all, we observe that if the uniform sampling is adopted the
singular spectrum ofSN mimicks the singular spectrum ofS in a more accurate way than if
the geometrical sampling is adopted. For example, forc = 70, the rms error defined by

rms =
√√√√∑N

k=1(σk − σ (N)k )2∑N
k=1 σ

2
k

(3.28)

is 1.5% in the case of uniform sampling and 9.5% in the case of geometrical sampling.
Therefore, in the following computations, uniform sampling will be adopted. Furthermore, as
shown in table 1, the rms error is rather sensitive to the choice of the truncation parameterc.
In fact, for c = ξN = 70, one row of the Gram matrix (3.23) vanishes and correspondingly
σ
(N)
N is also equal to zero. This implies that the discrepancy between the analytical and the

discrete data singular spectra first decreases (until the Gram matrix has a row close to zero) and
then increases since for increasing values ofc a fixed value of sampling pointsN must cover
an increasing energy range, thus reducing the accuracy of the computation. In figure 1 we
compare the analytical singular spectrum with the numerical one obtained by using uniform
sampling. In figure 2 the first four singular functions ofSN (computed by equation (3.22)) are
plotted together with the first four singular functions ofS (computed by equation (3.5)). From
these results it follows that the data discretization does not significantly modify the singular
system if a reasonably large number of uniformly sampled points is used.

Table 1. Comparison between the singular spectra ofS andSN with N = 100 uniformly sampled
points in the rangeξ1 = 0, ξN = 70 for increasing values of the truncation parameterc.

c rms error

70 1.50× 10−2

71 1.40× 10−2

72 1.30× 10−2

73 1.21× 10−2

74 1.14× 10−2

75 1.10× 10−2

76 1.11× 10−2

77 1.17× 10−2

78 1.29× 10−2

79 1.45× 10−2

80 1.65× 10−2

85 2.91× 10−2



1476 M Piana et al

Figure 1. Singular values in the discrete data case (solid) and in the analytical case (dashed) for
N = 100 uniformly sampled observation points in the rangeξ1 = 0, ξN = 70. The truncation
parameter isc = 75.

(a) (b)

(c) (d)

Figure 2. Singular functionsuk in the discrete data case and uniform sampling (solid) and in the
continuous data case (dashed): (a) first singular functionu1; (b) second singular functionu2; (c)
third singular functionu3; (d) fourth singular functionu4. The parametersN , ξ1, ξN andc are as
in figure 1.
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4. The non-uniform ionization case

Though widely used in data analysis for simplicity, a uniformly ionized plasma does not
represent a realistical model for the description of thick-target bremsstrahlung in the solar
corona. However, the effects of non-uniform ionization may be dramatic and lead to ambiguous
interpretation. A first generalization is given by a step-function ionization structure with depth
mimicking the sharp coronal–chromospheric separation in solar flare plasmas. If this model is
adopted, the integral equation relating the injection spectrum and the photon radiation is given
by equation (2.8), i.e. the presence of a non-uniform ionization is reflected in a double-step
form of the integral kernel. This apparently simple and in some sense natural modification
implies serious consequences for the study of the inverse problem with particular reference to
the uniqueness of the solution.

4.1. Non-uniqueness: an analytical approach

Many of the more surprising properties of the integral equation (2.8) can be appreciated through
a simple analytic approach. Following [4], we differentiate (2.8) with respect toξ (making the
natural assumptions thatg(ξ) is suitably differentiable and that the electron spectrum falls off
sufficiently fast so that the total energy is finite, sof → 0 asξ →∞):

f (ξ) +
1

λ
f (ξ + 1) = f ∗(ξ), (4.1)

wheref ∗(ξ) = −(λ + 1)g′(ξ) (this apparently odd notational choice is motivated by the fact
that, as is obvious from (2.7),f ∗(ξ) is precisely the solution of the integral equation foruniform
ionization, so that the non-uniform ionization problem can be viewed as a two-stage inversion,
where the photon spectrum is first inverted assuming uniform ionization to obtainf ∗(ξ) and
then this is used to solve for thereal electron spectrum via (2.7), as described in the appendix).
Equation (4.1) is not a solution forf but is essentially a recurrence relation relating the solution
at values ofξ differing by one (which corresponds in physical units toE1, the energy required
to reach the transition region). With this interpretation it is clear that the values of the solution
at points not precisely separated by an integer are unrelated (although often one would wish to
impose some regularity condition, such as continuity or even analyticity, that would constrain
the differences between neighbouring points). Moreover, on the face of it we are free to
specify the solution arbitrarily in any (half-open) interval(ξ, ξ +1] and use (4.1) recursively to
obtainf (ξ) at any other point. Since we are only interested in positiveξ we will choose(0, 1]
to be this canonical interval in what follows and define, for anyξ

ξ = i + ξ0 (4.2)

where 0< ξ0 6 1 andi is the largest integer less thanξ . Then for any functionφ(ξ0) a
solution of (4.1) is given by

f (ξ) = f (i + ξ0) = (−λ)i
[
φ(ξ0)−

i−1∑
j=0

(−λ)−j f ∗(ξ0 + j)

]
. (4.3)

That this is true foranyφ indicates the severity of the non-uniqueness.
In general, the solutions (4.3) will not be continuous (or will have discontinuous

derivatives) at integer values ofξ , and it might be thought that the non-uniqueness is a result
of allowing this lack of regularity, so that requiring, say, infinitely differentiable or analytic
solutions might eliminate the non-uniqueness. That this is not so can easily be seen from an
investigation of the null functions of (4.1) (i.e., the solutions of (4.1) withf ∗(ξ) ≡ 0). The
functions

f (ξ) = λξ sin(2n + 1)πξ, (4.4)
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for any integern, are obviously analytic and can be seen to satisfy (4.1) withf ∗(ξ) = 0 (it
is also possible to include an arbitrary phase in (4.4)). Thus, if an analytic solution to (4.1)
exists, there will be infinitely many such solutions differing by linear combinations of the null
functions in (4.4). In fact, given aφ(ξ0) defined on(0, 1] it is possible to expandλ−ξ0φ(ξ0) as
a Fourier series, so that more general null functions can be expressed in terms of those in (4.4).

The preceding analytic results on non-uniqueness overlook the important physical
constraint that the real electron spectrum must be non-negative everywhere. Since general
null functions, which from (4.3) are given by

f (ξ) = (−λ)iφ(ξ0), (4.5)

must alternate in sign from one integer-length interval to the next they cannot be positive
definite, which might suggest that enforcing positivity eliminates the non-uniqueness. Again,
as was shown in [4], this is not the case. Returning to (4.3) it is clear that imposingf (ξ0+i) > 0
for varying i results alternately in upper and lower bounds on the (otherwise arbitrary)
functionφ(ξ0) (owing to the(−λ)i factor). So, for any positive integerk, we must have

2k−1∑
j=0

(−λ)−j f ∗(ξ0 + j) 6 φ(ξ0) 6
2k∑
j=0

(−λ)−j f ∗(ξ0 + j). (4.6)

Clearly, therefore, the values ofφ at anyξ0, and hence off at anyξ , are fixed uniquely
whenever the series in (4.6) converges absolutely, i.e. if

S(ξ0) ≡
∞∑
j=0

|(−λ)−j f ∗(ξ0 + j)| (4.7)

converges, for then the upper and lower bounds must be equal, and theuniquesolution is given
from

φ(ξ0) =
∞∑
j=0

(−λ)−j f ∗(ξ0 + j), (4.8)

which givesf via (4.3). Note that convergence of (4.7) is a sufficient but not a necessary
condition for the solution to be unique: if it happens that the upper and lower bounds are equal
at some finitek (becausef ∗(ξ) is zero over an interval of length one or greater, for example),
then uniqueness is assured regardless of the behaviour ofS(ξ0).

S(ξ0)will converge whenever|λ| > 1 (since the finite-energy condition ensures thatf ∗(ξ)
tends to zero for largeξ ). For |λ| < 1, S(ξ0) only converges iff ∗ falls off sufficiently fast to
counteract the increase in|λ|, i.e.

|λ−j f ∗(ξ0 + j)| = O(j−1). (4.9)

As noted in [4], a sufficient (although again not necessary) condition for this isf ∗(ξ) =
O(e−aξ ), with a > − logλ. The common assumption of a power-law photon spectrum
(extending to infinite energies) does not satisfy this, and non-uniqueness results.

Obviously, a real photon spectrum will not extend to arbitrary energies, and the preceding
discussion shows that if the photon spectrum is flat (f ∗(ξ) = 0) over anyξ -range of length one
or larger the solution will be unique, so that a real photon spectrum will always give rise to a
unique solution. However, the solution obtained will be highly sensitive to the chosen upper
cut-off. From (4.8) the solution for a photon spectrum with an upper cut-off atξ = i0, say, is

φi0(ξ0) =
i0−1∑
j=0

(−λ)−j f ∗(ξ0 + j). (4.10)
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If the cut-off was instead at a slightly largerξ = i0 + δ, then forξ0 < δ the solution is

φi0+δ(ξ0) = φi0 + (−λ)−i0f ∗(ξ0 + i0), (4.11)

and the last term will, in general, be large, for smallλ and/or largei0. Thus, in practical
situations the non-uniqueness is replaced by an instability to the form of the photon spectrum
at large energies. This is particularly relevant to the results presented in this paper because we
are able to study only the truncated problem numerically.

4.2. SVD analysis

As in section 2, we assume that the electron energy is truncated at a sufficiently large value and
that the emitted spectrum is detected in correspondence withN discrete values of the photon
energy uniformly sampled over a finite range. Therefore, it is natural to introduce the operator
DN : L2(0,∞)→ Y such that

(DNf )(ξn) = 1

λ + 1

∫ ξn+1

ξn

f (η) dη +
1

λ

∫ c

ξn+1
f (η) dη n = 1, . . . , N (4.12)

wherec is the usual truncation parameter. This allows us to write the inverse problem of
determiningf from gn = g(ξn), n = 1, . . . , N in the synthetic form

gn = DNf. (4.13)

DN is again a compact linear operator and the explicit form of the adjointD∗N : Y → L2(0, c)
is

D∗Ng(η) =
N∑
n,m

{ gn

1 +λ
wnmχ[ξm,ξm+1](η) +

gn

λ
wnmχ[ξm+1,c]

}
. (4.14)

As in the case of the single-step operatorSN ,DN can be represented in the form

(DNf )n = (f, ψn)2 (4.15)

where this time the functionsψn are defined as

ψn(η) =


0 η 6 ξn

1

λ + 1
ξn < η < ξn + 1

1

λ
ξn + 16 η 6 c.

(4.16)

The singular system is as usual defined by theshiftedeigenvalue problem

DNuk = σkvk; D∗Nvk = σkuk k = 1, . . . , N (4.17)

and can be computed by diagonalizing the matrixDND
∗
N . RelationDND

∗
N = G⊥W holds

also in this case and the explicit form for thenm entry of the Gram matrix is, forn > m,

Gnm = 1

λ(λ + 1)
+

1

λ2
(c − ξn − 1) (4.18)

if ξm + 16 ξn and

Gnm = 1

(λ + 1)2
(ξm + 1− ξn) +

1

λ(λ + 1)
(ξn+1− ξm+1) +

1

λ2
(c − ξn − 1) (4.19)

if ξm + 1> ξn.
In figure 3 we plot the singular spectrum ofDN andSN in the case ofN = 100 points

uniformly sampled betweenξ = 0 andξ = 70. The main difference between these two spectra
is in the fact that the singular spectrum ofDN presents a flat region in correspondence with
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Figure 3. Comparison of the singular values of the double-step operator (solid) with the singular
values of the single-step operator (dashed). The parametersN , ξ1, ξN andc are as in figure 1 and
λ = 0.625.

high values ofk. In order to interpret this behaviour, we introduce the linear integral operator
D,

(Df )(ξ) = 1

λ + 1

∫ ξ+1

ξ

f (η) dη +
1

λ

∫ ∞
ξ+1
f (η) dη. (4.20)

As explained in section 4.1, this operator has a non-trivial kernel, i.e. there exist non-zero
functions{f } such thatDf = 0. These functions are also in the kernel ofD∗D with D∗ the
formal adjoint ofD and therefore the singular valueσ = 0 has multiplicity bigger than one.
Now the finite-rank operatorDN can be considered as a truncated discrete-data approximation
of D. Therefore, in particular, the high-order singular values ofDN (i.e. the smallest ones),
which are indeed very close, can be seen as the truncated discrete-data approximation of the
singular value zero ofD with multiplicity bigger than one. Of course,DN approximatesD the
better, the larger the values of the truncation parameterc and the number of sampling points
N . For example, in figure 4 we fixλ = 0.625 (this value ofλ can be physically motivated with
arguments from solar plasma physics) and consider different values ofc andN (for physical
reasons, oncec is fixed, the data variable range(ξ1, ξN) must be belowc); as you can see
the flat region in the singular spectrum is present only when the values ofc andN provide a
good trade-off between a large energy range and an accurate sampling. Indeed, for fixedN ,
the plateaudisappears ifc is too small (figure 4(a)) and appears again for a larger value of
c (figure 4(b)). An analogous behaviour is assumed by the spectrum whenc is fixed andN
increases. For example, in figure 4(c) there is noplateauowing to undersampling while the
flat region can be distinguished again in figure 4(d) whereN is sufficiently large to assure an
accurate approximation of the singular spectrum ofD. We also point out that the presence
of a degenerate small singular value is related to the presence of a pronounced double-step
behaviour in the integral kernel. In fact, in figure 5, it is shown that the flat region for highk

occurs only for values ofλ such that this double-step feature is significant (figures 5(b) and
(c)) while if the difference between the two steps is small, i.e. for values ofλ too small or too
large, no flat region can be observed (figures 5(a) and (d)). What this means physically is that
in these two limits the bremsstrahlung spectrum becomes dominated by one of the uniform
ionization limitsx = 1 or x = 0. The first is that of equation (2.9) while the second is the
same withg rescaled by the factorλ + 1, both having analytically unique solutions.
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(a) (b)

(c) (d)

Figure 4. Singular spectrum ofDN for different values of the truncation parameter and of the
number of sampling points. (a) ξ1 = 0, ξN = 10, c = 12; (b) ξ1 = 0, ξN = 70, c = 75; (c)
ξ1 = 0, ξN = 300,c = 320,N = 100; (d) ξ1 = 0, ξN = 300,c = 320,N = 500. For each plot
λ = 0.625.

In figures 6 and 7 some singular functions ofDN are plotted in the case whereN = 100,
ξ1 = 0, ξN = 70, c = 75, λ = 0.625 (the same conditions as figure 4(b)). In particular, in
figure 6 we present singular functions corresponding to singular values in the steep part of the
spectrum. These functions oscillate with frequency increasing with their order, as typically
happens to this kind of integral operator [2]. However, for singular functions corresponding
to the flat region of the spectrum, such as the ones represented in figure 7, a low-frequency
oscillation behaviour can be noticed superimposed on the high-frequency oscillations typical
of high-order singular functions. Since the same does not occur in the singular functions of
corresponding order for the single-step operatorSN (as shown in figure 8), it is reasonable
to interpret the singular functions of the flat region of the spectrum ofDN as the functions
generating the null functions forD (in section 4.1 it is pointed out that these null functions are
indeed characterized by low-frequency oscillations).

Remark 4.1. The distinctive feature of the discretized double-step kernel (non-uniform
ionization) inverse problem is that it has high-order (lowσk) singular functions containing
low-frequency components. These correspond to the low-frequency structure imposed on the
photon spectrum by the plasma step ionization structure and have the effect of filtering out
information on the electron spectrum at energies related to the transition step depth. This is
equivalent to low-frequency non-uniqueness in the continuous problem and contrasts with the
usual high-frequency filtering characteristic of ill-posed inverse problems.
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(a) (b)

(c)
(d)

Figure 5. Singular spectrum ofDN for different values ofλ. (a) λ = 0.001; (b) λ = 0.5; (c)
λ = 0.625; (d) λ = 20.N = 100 points are uniformly sampled in the rangeξ1 = 0, ξN = 70 with
c = 75.

5. Solution of the inverse problem

The availability of the singular system for the finite-rank operatorsSN andDN significantly
eases the solution of the problem of determining the electron distribution functionf from
a photon spectrum data setg both for uniform and non-uniform ionization conditions. We
briefly describe this fact in the case ofDN .

Let us consider the least-squares problem

‖g −DNf ‖Y = minimum (5.1)

with g = (g1, . . . , gN) in Y and‖ · ‖Y the norm induced by(·, ·)Y . This minimum problem is
equivalent to the Euler equation

D∗NDNf = D∗Ng (5.2)

and the set of its solutions is closed and convex. It follows that there exists a unique minimum
norm least-squares solutionf † which is called the generalized solution of problem (4.13) and
which can be described in terms of the singular system by [8]

f †(η) =
N∑
k=1

1

σ
(N)
k

(g, v
(N)
k )Y u

(N)
k (η). (5.3)

Therefore, a general representation for the solutions of (4.13) is

f = f † + h (5.4)
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(a) (b)

(c)
(d)

Figure 6. Singular functionsuk of DN in the caseξ1 = 0, ξN = 70,N = 100, c = 75 and
λ = 0.625. (a) k = 1; (b) k = 10; (c) k = 30; (d) k = 60.

with h in the kernel ofDN . Owing to the presence of small singular values the generalized
solution (5.3) is not physically significant when the data vectorg is affected by the noise
consequence of the measurement procedure. This is the reason why regularization methods
must be introduced to provide stable approximate solutions of the inverse problem. Also, for
some significant algorithms the regularized solutions can be written in terms of the singular
system. This is the case, for example, of the truncated singular value decomposition (TSVD)
where the regularized solution is obtained by stopping the sum (5.3) at some numberM < N .
Another example is the Tikhonov method where the regularized solution is chosen in the
one-parameter family of solutions of the minimum problem

‖DNfα − g‖2Y + α‖fα‖2L2(0,c) = minimum (5.5)

or, equivalently, of the Euler equation

(D∗NDN + αI)fα = D∗Ng. (5.6)

It is not difficult to prove the following expansion forfα:

fα(η) =
N∑
k=1

σk

σ 2
k + α

(g, vk)Y uk(η). (5.7)

Both in the TSVD and in the Tikhonov method the optimal choice of the regularization
parametersM andα is performed by usingad hoccriteria whose computation is again eased
by using the singular system of the operator. It is our intention to apply these regularization
methods (and also other ones which explicitly allow fora priori knowledge of the solution) to
the inversion of the real data the HESSI mission will provide next year.
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(a) (b)

(c) (d)

Figure 7. Singular functionsuk of DN in the caseξ1 = 0, ξN = 70,N = 100, c = 75 and
λ = 0.625. (a) k = 61; (b) k = 62; (c) k = 63; (d) k = 64.

Appendix. Equations for generalq(ε, E)

Here we show that the problem of non-uniqueness does not arise because of the form of cross
sectionq adopted. If we reverse the order of integration in (2.1) it can be written as a two-stage
operation, namely

Q(F(E); ε) =
∫ ∞
ε

q(ε, E)F(E) dE = H(ε) (A.1)

with ∫ ∞
E

F0(E0) dE0

λ + x(E0, E)
= F(E0). (A.2)

Solution of the first equation forF amounts to deconvolution of a mean source electron
spectrum through the cross section operatorq, formally

F(E) = Q−1[H(ε);E] (A.3)

while solution of the second amounts to deconvolution of the resultingF over the electron path,
allowing for the plasma ionization structure. Although the form ofF will depend on theq used,
the solution (A.3) is unique, but whenF is inserted in (A.2) the problem of non-uniqueness
for a step functionx(N) remains. An important further issue which we do not address here
is whether the non-uniqueness arises for more general forms ofx than a step function. We
merely observe here that, for generalq,K, differentiation of (A.2) with respect toE yields

F0(E0)− 1

K(0)

∫ ∞
E

K ′(E2
0 − E2)F0(E0) dE0 = −F

′(E0)

K(0)
. (A.4)
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(a) (b)

(c) (d)

Figure 8. Singular functionsuk of SN in the caseξ1 = 0, ξN = 70,N = 100 andc = 75. (a)
k = 61; (b) k = 62; (c) k = 63; (d) k = 64.

In the case of constantx,K ′ = 0 and the integral term vanishes. In the case of a step functionx,
K ′ is a delta function and the integral is replaced by a shift operator as in (2.9). What is required
is examination of whether the general (non-step) form ofK leads to the operator in (A.2) having
null functions. We do not pursue this issue here but simply make some observations. For the
step function ionization structure it is clear that there is a set of exactly zero singular values
corresponding to singular functions with long wavelengths. It seems quite plausible that the
existence of these singular functions is a result of the particular (discontinuous) form of the
kernel, and that they will disappear for other, more realistic, ionization structures. However, if
we consider a sequence of inverse problems with increasingly sharp, but continuous, kernels
what we expect to see is the existence of singular values corresponding to long-wavelength
singular functions that are non-zero in general but which tend to zero as the kernel approaches
a step function. So, for a realistic ionization structure with a sharp but continuous change, we
expect to see a set ofvery smallsingular values corresponding to long-wavelength singular
functions. In practical applications with noisy data such distinction between ‘small’ and ‘zero’
singular values is, of course, irrelevant.
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